Steroidal Saponins from Solanum torvum Swartz Collected in Dibombari, Cameroon
Article Sidebar
Main Article Content
Abstract
Aims: This work aimed to investigate the phytochemical constituents of Cameroonian species of Solanum torvum Swartz and to carry out. Antioxidant, enzyme inhibition (urease and glucosidase) and antibacterial activities of methanol crude extract and isolated compounds.
Methodology: The stems of Solanum torvum were collected and extracted by maceration in methanol. The crude extract was subjected to repeated column chromatographic separation. Their structures were elucidated on the basis of spectral analysis of ESI-MS, 1D and 2D NMR.
The methanol crude extract and pure compounds were tested against Pseudomonas aeruginosa, Escherichia coli, Proteus mirabilis, Salmonella typhi, Klebsiella pneumonia, Staphylococcus aureus, Streptococcus faecalis, Micrococcus sp. and Saccharomyces cerevisiae using the method of disk diffusion. The radical scavenging (DPPH) and the enzyme inhibition (urease and glucosidase) were perfomed according to the standards methods
Results: One new compound neochlorogenin-6-O-β-D-xylopyranosyl-(1→3)-α-D-quinovopyranoside, together with eight known compounds including four steroidal derivatives, neochlorogenin-6-O-β-L-rhamnopyranosyl-(1→3)-β-D-quinovopyranoside, yamogenin-3-O-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranoside, diosgenin, chlorogenin; three phytosterols stigmasterol, β-sitosterol, β-sitosterol-3-O-β-D-glucopyranoside and one pentacyclic derivative, betullinic acid were isolated from the stems of Solanum torvum.. Diosgenin was isolated from S. torvum for the first time. All the tested compounds were found to be inactive while methanol crude extract showed moderate urease and significant glucosidase inhibition activities with IC50 = 61.2± 0.68 and 32.5± 0.87 µM respectively.
Conclusion: These results suggested that Solanum torvum might be used as an enzyme inhibition agent particularly for alpha glycosidase inhibition.
Article Details
References
Ndebia EJ, Kamgang R, Nkeh-chungagAnye BN. Analgesic and anti- inflammatory properties of aqueous extract from leaves of Solanum torvum (Solanaceae), Afri J Tradit Complement Altern Med. 2007;4(2): 240–244.
DOI: 10.4314/ajtcam.v4i2.31214
ZubaidaY, Wang Y, Baydoun E. Phytochemistry and pharmacological studies on Solanum torvum Swartz. J Appl Pharm Sci. 2013;3(4):152-160.
DOI: 10.7324/JAPS.2013.3428
Mahmood U, Pawan K, Agrawal, Thakur RS. Torvonin-A, a spirostane saponin from Solanum torvum leaves. Phytochemistry. 1985;24(10):2456-2457.
Available:https://doi.org/10.1016/S0031-9422(00)83069-1
Darkwah WK, Koomson DA, Miwornunyuie N, Nkoom M, Puplampu JB. Review: phytochemistry and medicinal properties of Solanum torvum fruits. All Life. 2020;13(1): 498-506. Available:https://doi.org/10.1080/26895293.2020.1817799
Arthan D, Svasti J, Kitta P. Antiviral isoflavonoid sulfate and steroidal glycosides from the fruits of Solanum torvum, Phytochemistry. 2002; 59(4):459-463.
DOI: 10.1016/s0031-9422(01)00417-4
Lu Y, Luo J, Huang X, Kong L. Four new steroidal glycosides from Solanum torvum and their cytotoxic activities. Steroids. 2009;74(1):95–101.
DOI: 10.1016/j.steroids.2008.09.011
Jinsheng L, Zhang L, Huang C, Fujiang G, Yiming L. Five new cyotoxic steroidal glycosides from the fruits of Solanum torvum. Fitoterapia. 2014;93(1):209–215. DOI: 10.1016/j.fitote.2014.01.009
Cuervo AC, Blunden G, Patel AV. Chlorogenone and neochlorogenone from unripe fruits of Solanum Torvum, phymchemisrry. 1991;30(4):1339-1341.
Available:https://doi.org/10.1016/S0031-9422(00)95233-6
Waghulde H, Kamble S, Patankar P, Jaiswal B, Pattanayak S, Bhagat C, et al. Antioxidant activity, phenol and flavonoid contents of seeds of Punica granatum (Punicaceae) and Solanum torvum (Solanaceae). Pharmacologyonline. 2011; 1:193-202.
Satish S, Raveesha K, Janardhana G. Antibacterial activity of plant extracts on phytopathogenic Xanthomonas campestris pathovars. Lett Appl Microbiol. 1999;28: 145-147.
Gyamfi MA, Yonaine M, Aniya Y. Free radical scavenging action of medicinal herbs from Ghana Thonningia sanguine on experientally induced liver injuries, General Pharmacol. 1999;32: 661-667.
DOI: 10.1016/s0306-3623(98)00238-9
Gulcin I, Alici HA, Cesur M. Determination of in vitro antioxidant and radical scavenging activities of propofol. Chem Pharm Bull. 2005;53:281-285.
Available:https://doi.org/10.1248/cpb.53.281
Nalini M, Olson JW, Maier RJ. Characterization of helicobacter pylori nickel metabolism accessory proteins needed for maturation of both urease and hydrogenase. J Bacteriol. 2002;185:726-734.
DOI: 10.1128/JB.185.3.726-734.2003
Weatherburn MW. Phenol-hypochlorite reaction for determination of ammonia. Anal Chem. 1967;39(8):971-974.
Available:https://doi.org/10.1021/ac60252a045
Saul R, Chambers JP, Molyneux RJ, Elbein AD. Castanospermine, a tetrahydroxylated alkaloid that inhibits β-glucosidase and β-glucocerebrosidase. Arch Biochem Biophys. 1983;221(2):593-597.
Available:https://doi.org/10.1016/0003-9861(83)90181-9
Atsumi T, Ikawa Y, Miwa Y, Kimata K. A chondrogenic cell line derived from a differentiating culture of AT805 teratocarcinoma cells. Cell Differ Dev. 1990;30(2):109–116. Available:https://doi.org/10.1016/0922-3371(90)90079-C
Kurihara Y, Kurihara H, Suzuki H, Kodama T, Maemura K, Nagai R, et al. Elevated blood pressure and craniofaclal abnormalities in mice deficient in endothelin-1. Nature. 1994;368:703-710.
Available:https://doi.org/10.1038/368703a0
Jorgensen JH, Turnidge JD. Susceptibility test methods: Dilution and disk diffusion methods, InJorgensen JH, Carroll KC, Funke G, Pfaller MA, Landry ML, Richter SS, Warnock DW Editors. Manual of Clinical Microbiology. 11th ed. ASM Press; 2015.
Available:https://doi.org/10.1128/9781555817381.ch71
Nostro A, Germano MP, D’angelo V, Marino A, Cannatelli MA. Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Lett Appl Microbiol. 2000;30(5):379- 384.
DOI: 10.1046/j.1472-765x.2000.00731.x
Ross JE, Scangarella-Oman NE, Miller LA, Sader HS, Jones RN. Determination of disk diffusion and MIC quality control ranges for GSK1322322, a novel peptide deformylase inhibitor. J clin microbiol. 2011;49(11):3928-3930.
DOI: 10.1128/jcm.01213-11
Tori K, Seo S, Terui Y, Nishikawa J, Yasuda F. Carbon-13 nmr spectra of 5β-steroidal sapogenins. Reassignment of the F-ring carbon signals of (25S)-spirostans. Tetrahedron Lett. 1981;22(25):2405- 2408.
Available:https://doi.org/10.1016/S0040-4039(01)82920-8
Lu Y, Luo J, Kong L. Chemical Constituents from Solanum torvum. Chin J Nat Medicines. 2011;9(1):30-32.
Available:https://doi.org/10.1016/S1875-5364(11)60015-0
Debella A, Haslinger E, Kunert O, Michl G, Abebe D. Steroidal saponins from Asparagus africanus. Phytochemistry. 1999;51(8):1069-1075.
Available:https://doi.org/10.1016/S0031-9422(99)00051-5
Khanam S, Sultana R. Isolation of β-Sitosterol and stigmasterol as active immunomodulatory constituents from fruits of Solanium xanthocarpum (Solanaceae). Int J Pharm Sci Res. 2012;3(4):1057-1060.
DOI:http://dx.doi.org/10.13040/IJPSR.0975-8232.3(4).1057-60
Chirchir KD, Cheplogoi KP, Omolo OJ, Langat KM. Chemical constituents of Solanum mauense (Solanaceae) and Dovyalis abyssinica (Salicaceae). Int J Biol Chem Sci. 2018;12(2):999-1007.
DOI: 10.4314/ijbcs.v12i2.29.